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We examine the influence of a thermal gradient on a classical reaction-diffusion system. The different
instability regions in the appropriate parameter space are examined. We show how the imposed temperature
gradient destabilizes a chemical front via the Soret effect, giving rise to both absolute and convective
instability.
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I. INTRODUCTION

A temperature gradient across a fluid mixture not only
causes a heat flux, but also gives rise to a diffusion current of
the constituent components. This net mass flux induces the
buildup of a concentration gradient parallel or antiparallel to
the thermal gradient. This thermal diffusion, known as the
Ludwig-Soret effect, is a cross effect between temperature
and concentration, whose existence was for the first time
observed in 1856 by Ludwig and then independently estab-
lished by Soret in 1879 �1–3�. Signatures of this effect can be
widely seen in thermohaline convection in oceans and com-
ponent segregation in liquid lava, and it has also been used
for the purification of isotopes, polymer characterization, and
separation of metals from alloys �4–6�. The Soret effect has
been explicitly studied recently in many systems, ranging
from simple binary fluid mixtures to complex molecular sys-
tems such as soluted surfactants, colloidal suspensions, and
charged micelles �7–10�. Along with the phenomenological
and microscopic description of the effect, accurate measure-
ments of the thermal diffusion ratios have been made by
several groups, by employing various optical techniques like
beam deflection and Rayleigh scattering, and also by thermo-
gravitational column methods and thermal field flow frac-
tionation �7,11,12�.

In this paper, we consider the Soret effect in a reactive
system where the components undergoing chemical reaction
are ionic in nature. Considering that a thermal gradient will
also have an impact on the migration and transport of the
ions, one may envisage that thermal diffusion may act as a
thermodynamic cross effect in a reaction-diffusion system.
The interaction between this diffusion and the nonlinearity
involved in chemical kinetics of the reacting components is
likely to bring about spatiotemporal instability, leading to
stationary pattern formation or wave propagation in a spa-
tially extended system, when the latter is driven out of equi-
librium. Although the Soret effect in reactive, homogeneous
systems has been observed �8�, and modification by an elec-
tromagnetic field of the fluxes of the ionic components of
reaction-diffusion systems, leading to stoppage, annihilation,
and aggravation of chemical waves and stationary patterns
�13–15� and the loss of symmetry of traveling wave fronts
under the influence of cubic autocatalytic kinetics �16� are

well known, the effect of thermodiffusion in inducing insta-
bility in reaction-diffusion systems has largely remained un-
explored. Our object in this paper is to study a planar ionic
reaction-diffusion system driven by a constant thermal gra-
dient, and to look for the onset of thermal-diffusion-induced
instabilities. As a prototypical example, we have considered
the arsenous acid–iodate system, which has been a good test-
ing ground for various features of nonlinear chemical dy-
namics over the years �17,18�. In what follows we show that
thermodiffusion may bring about spatiotemporal instability
in this system and, depending on the appropriate parameter
region and Soret coefficient, it is possible to realize the con-
vective and absolute instability regimes and chemical wave
propagation. We corroborate our theoretical analysis by nu-
merical simulations in two dimensions.

II. THERMODIFFUSION IN A REACTION-DIFFUSION
SYSTEM: THE MODEL

We have chosen as our model one of the simplest chemi-
cal systems that has been widely used by several groups for
the study of wave-front propagation and noise-induced insta-
bility, the arsenous acid–iodate reaction. Detailed studies
made by Showalter and co-workers �19� have portrayed the
varied wave-front characteristics of this reaction. Different
experimental and numerical works analyzing the dependence
of the wave-front velocity on the stoichiometry and the ratio
of the diffusivities of autocatalyst and reactants in this sys-
tem have been carried out �20,21�.

The arsenous acid–iodate system is a composite of two
reactions, viz., the Dushman reaction �2.1� and the Roebuck
reaction �2.2�, which have been known for over a century:

IO3
− + 5I− + 6H+ � 3I2 + 3H2O, �2.1�

H3AsO3 + I2 + H2O → H3AsO4 + 2I− + 2H+. �2.2�

In the overall process, the Dushman reaction is the rate-
determining step �19,22�. We have here followed the kinetic
studies of the latter as given by Schmitz �23�, where the
experimental observation of the simultaneous first- and
second-order dependence of the rate on �I−� over a range of
low to moderately low concentration of I− has been made.
The elementary steps involved in the mechanism of the
Dushman reaction as suggested by Schmitz are as follows:

IO3
− + H+ � HIO3, �2.3�*Electronic address: pcdsr@mahendra.iacs.res.in
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HIO3 + I− + H+ � I2O2 + H2O, �2.4�

I2O2 + H2O → HIO2 + HOI, �2.5�

I2O2 + I− → IO2
− + I2. �2.6�

The experimental rate law for the system is given by

d�I−�
dt

= �k1 + k2�I−���I−��IO3
−��H+�2, �2.7�

where k1=4.5�103M−3 s−1 and k2=1.0�108M−4 s−1 are the
rate constants. Here M stands for mol dm−3, the unit of molar
concentration.

The conspicuous feature of this reaction is the role of I2 as
an intermediate. The sharp change in concentration of the
iodine-containing species, viz., I−, IO3

−, and I2, as functions
of time in a stirred batch reactor is another interesting char-
acteristic of this reaction. This allows the assumption that all
the iodine is present as either I− or IO3

−, the concentration of
I2 being negligible as compared to these two species �24�.

The present study begins with a note that, when the sys-
tem is spatially extended, a sharp change in concentration of
iodine-containing species with time is likely to make the
spatial local gradient of these species appreciably sharp.

In view of these discussions, we have the following rate
equations for the three ionic species �I−�, �IO3

−�, and �H+�,
respectively �details of the kinetics are included in the Ap-
pendix�:

d�I−�
dt

= �k1 + k2�I−���I−��IO3
−��H+�2 − � · J�I−�, �2.8�

d�IO3
−�

dt
= − � · J�IO3

−�, �2.9�

d�H+�
dt

= − � · J�H+�, �2.10�

where Ji denotes the flux of the ith ionic species for the
system.

For a reaction-diffusion system in the presence of a ther-
mal gradient, the flux for an ionic species is given by the
Ludwig-Soret effect as

Ji = − Di � Ci − DTi
Ci�1 − ci� � T , �2.11�

where Di denotes the translational diffusion coefficient, DTi
is the thermal diffusion coefficient, Ci is the molar concen-
tration of the ith ion, ci is the relative concentration of the
same �i.e., ci=Ci /�Ci�, and �T is the thermal gradient be-
tween two sides of the reaction vessel and a constant. DTi

can
be expressed in the form

DTi
= STi

Di, �2.12�

STi
being the Soret coefficient of the ith ionic species which

is given as �8�

STi

−1 = ST0

−1�1 + ksCi� , �2.13�

ks being a phenomenological constant. The values of ST0
for

ionic species being nearly equal, we omit the subscript i for
the same.

Thus, Eq. �2.11� takes the form

Ji = − Di � Ci − DiST0
Ci

�1 − CicT�
�1 + ksCi�

� T , �2.14�

where cT=1/�Ci.
On substituting the expression for the flux, Eq. �2.8� takes

the form

d�I−�
dt

= �k1 + k2�I−���I−��IO3
−��H+�2 + D�I−� � · ���I−�

+ ST0
�I−�

�1 − �I−�cT�
�1 + ks�I−��

� T� . �2.15�

Now we substitute u�x ,y , t�, v�x ,y , t�, and w�x ,y , t� for
�I−�, �IO3

−�, and �H+�, respectively. Considering DI− =DIO3
−

=DH+ /d=1, we obtain the following forms of the rate equa-
tions in a similar way:

�u�x,y,t�
�t

= �k1 + k2u�uvw2 + ���u + ST0

u�1 − ucT�
�1 + ksu�

� T� ,

�2.16�

�v�x,y,t�
�t

= ���v + ST0

v�1 − vcT�
�1 + ksv�

� T� , �2.17�

�w�x,y,t�
�t

= d � ��w + ST0

w�1 − wcT�
�1 + ksw�

� T� . �2.18�

A schematic diagram of the movement of ions under the
influence of thermodiffusion has been depicted in Fig. 1. The
components in a mixture move to different ends of the Soret
cell as per the sign of their Soret coefficients. Those with
positive coefficient move to the colder region and ones with
negative Soret coefficient move toward the hot end. An ex-
planation of this phenomenon given by Prigogine et al. was
that the sign of ST0

is determined by the difference of the

FIG. 1. Schematic diagram of an ionic reaction under the influ-
ence of a constant thermal gradient, where the different compo-
nents, light and heavy, move to different ends of the reaction vessel,
depicting thermodiffusion.
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cohesion densities �energy of vaporization divided by molar
volume� of the pure constituents of a binary liquid mixture
�25�. The constituent with higher density of cohesion is en-
riched at the cold wall. Other views on the change of sign of
the Soret coefficient are also found, based on the concepts of
heat of transport �26� and the temperature and concentration
dependence of the Soret coefficient �27�.

III. CONVECTIVE AND ABSOLUTE INSTABILITIES

We assume the existence of a spatially uniform steady
state �u=u0,v=v0,w=w0� of the dynamical system, such that

f�u0,v0,w0� = 0, �3.1�

where f�u ,v ,w� denotes the kinetic part of Eq. �2.10�. We
furthermore assume that this state is stable in the absence of
diffusion, i.e.,

� �f

�u
	

u=u0,v=v0,w=w0

= f� � 0. �3.2�

The stability of the steady state as implied in Eq. �3.2� is
purely kinetic in nature. Since we are interested in the stable
homogeneous steady state, it is also necessary to ensure that
the choice of parameter space does not lead to instability
when the diffusion ratio is incorporated in the analysis. Con-
sidering an expansion of u, v, and w in Eq. �2.16� about the
steady value �u0 ,v0 ,w0�, and keeping only the linear terms in
�ū, �v̄, �w̄, we have

���ū�
�t

= v0w0
2k1�ū + u0w0

2k1�v̄ + 2u0v0w0k1�w̄

+ 2u0v0w0
2k2�ū + u0

2w0
2k2�v̄ + 2u0

2v0w0k2�w̄ + �x,y
2 �ū

+ ST0
� T� 1 − u0cT

�1 + ksu0�2 −
u0cT

�1 + ksu0�	�x,y�ū , �3.3�

where the terms within the square brackets correspond to the
first derivative of the Soret term at the point �u0 ,v0 ,w0�, or
�� /�u��u�1−ucT� / �1+ksu��u=u0,v=v0,w=w0

.
Proceeding similarly, Eqs. �2.17� and �2.18� take the

forms

���v̄�
�t

= �x,y
2 �v̄ + ST0

� T� 1 − v0cT

�1 + ksv0�2 −
v0cT

�1 + ksv0�	�x,y�v̄ ,

�3.4�

���w̄�
�t

= d�x,y
2 �w̄ + dST0

� T� 1 − w0cT

�1 + ksw0�2

−
w0cT

�1 + ksw0�	�x,y�w̄ . �3.5�

We now express the spatiotemporal perturbations as

�ū�x,y,t� = Aei�kx·x+ky·y−�t�, �3.6�

�v̄�x,y,t� = Bei�kx·x+ky·y−�t�, �3.7�

�w̄�x,y,t� = Cei�kx·x+ky·y−�t�, �3.8�

where A, B, and C are constants. Substituting the above into
Eqs. �3.3�–�3.5�, we have

− i�A = �v0w0
2k1 + 2u0v0w0

2k2�A + �u0w0
2k1 + u0

2w0
2k2�B

+ 2�u0v0w0k1 + u0
2v0w0k2�C − �kx + ky�2A + i�kx

+ ky�ST0
� T� 1 − u0cT

�1 + ksu0�2 −
u0cT

�1 + ksu0��A , �3.9�

− i�B = − �kx + ky�2B + i�kx + ky�ST0
� T� 1 − v0cT

�1 + ksv0�2

−
v0cT

�1 + ksv0��B , �3.10�

− i�C = − d�kx + ky�2C + i�kx + ky�dST0
� T� 1 − w0cT

�1 + ksw0�2

−
w0cT

�1 + ksw0��C . �3.11�

The system of equations �3.9�–�3.11� can be put in the form
of a matrix equation as �from now onwards we replace �kx

+ky� by k�

L
A

B

C
� = 0, �3.12�

where

L = 
l11 + i� l12 l13

0 l22 + i� 0

0 0 l33 + i�
� .

Here the expressions for the nonzero elements of the above
matrix are as follows:

l11 = ��v0w0
2k1 + 2u0v0w0

2k2� − k2� + ikST0
� T� 1 − u0cT

�1 + ksu0�2

−
u0cT

�1 + ksu0�� , �3.13�

l12 = �u0w0
2k1 + u0

2w0
2k2� , �3.14�

l13 = �2u0v0w0k1 + 2u0
2v0w0k2� , �3.15�

l22 = − k2 + ikST0
� T� 1 − v0cT

�1 + ksv0�2 −
v0cT

�1 + ksv0�� ,

�3.16�

l33 = − dk2 + ikdST0
� T� 1 − w0cT

�1 + ksw0�2 −
w0cT

�1 + ksw0�� .

�3.17�

For the sake of simplicity the constant term �v0w0
2k1

+2u0v0w0
2k2� will henceforth be replaced by a0. In the same

THERMODIFFUSION-INDUCED INSTABILITIES IN… PHYSICAL REVIEW E 75, 066206 �2007�

066206-3



spirit we also incorporate the following abbreviations:

M1 = � 1 − u0cT

�1 + ksu0�2 −
u0cT

�1 + ksu0�� ,

M2 = � 1 − v0cT

�1 + ksv0�2 −
v0cT

�1 + ksv0�� ,

M3 = � 1 − w0cT

�1 + ksw0�2 −
w0cT

�1 + ksw0�� .

To examine the stability, we now write the following de-
terminantal equation for the eigenvalue problem:

�L� = 0. �3.18�

On expanding Eq. �3.18�, we get the following dispersion
relations:

�1 = i�a0 − k2� − kST0
� TM1, �3.19�

�2 = − ik2 − kST0
� TM2, �3.20�

�3 = − ik2 − kST0
� TM3. �3.21�

Spatial instability sets in as Im���k2�� attains a positive
value. We now look for the range of k2 values for which the
imaginary parts of the eigenvalues ��k2� attain a positive
value for a given constant temperature gradient �T and a
particular value of the Soret coefficient ST0

.
The experimentally admissible parameters �24� are given

by k1=4.5�103M−3 s−1, k2=1.0�108M−4 s−1, and DH+ =2
�10−1 mm2 s−1 �giving d=2�; and the initial conditions used
are u0=6.0�10−3M; v0=0.0M; w0=7.1�10−3M. Figure 2
depicts the range of the k2 values for some constant thermal
gradient ��T=0.5 K�, a fixed value of ks �=7�104 M−1�,
and several values of ST0

�=1.3�10−4–1.0�10−2 K−1� for
which a small perturbation may bring about an instability
with time.

Following Scott et al. �28�, we now distinguish between
three typical situations: absolute instability, convective insta-
bility, and stationary pattern formation.

A. Absolute instability

When a small perturbation lifts the system to a state dif-
ferent from the initial, and the perturbation moves forward,
transforming the system to a final state away from the steady
state, the system is said to be absolutely unstable. The
present context, when both the real as well as the imaginary
parts of the eigenvalues are nonzero, implies absolute insta-
bility. The presence of the real part in the solution of the
eigenvalues, Re���, signifies a nonzero imaginary time part
in the exponential part of the spatiotemporal perturbations,
e−i�t �Eq. �3.6��, and thus predicts wave front propagation in
a system with no back. On the other hand, the imaginary part
of the eigenvalues Im���, i.e., the real time part in the expo-
nential of the perturbation, promises a final state that is dif-
ferent from the initial state. We will return to the specific
nature of the wave front propagation under the influence of
absolute instability as depicted in Fig. 5�a� in the next sec-
tion, viz., numerical simulation.

B. Convective instability

A spatially extended system is said to be convectively
unstable if a perturbation induces a local growth away from
the spatially uniform steady state, and the disturbance then
propagates as a wave packet growing in size. But, unlike in
the case of absolute instability, in this case, when the wave
packet passes by, the system comes back to the original
steady state. The condition of convective instability is given
by the reality of the eigenvalues �; i.e., Im���k0��=0. In
what follows we will again discuss the propagation of the
wave front with time, when the system is convectively un-
stable, in Sec. IV, as portrayed in Fig. 5�b�.

C. Stationary pattern

When the perturbation is constant with time, with a purely
imaginary exponent, it can give rise to a stationary pattern,
i.e., the exponential part should be of the form ei�kxx+kyy�, such
that �=0 and kx and ky are real.

In order to find the appropriate condition for the transition
between absolute and convective instability, we proceed as
follows. From Eq. �3.19� one obtains

��

�k
= − 2ik − ST0

� TM1. �3.22�

We find the maximum at k0 such that ��� /�k�k=k0
=0,

which yields,

k0 =
i

2
ST0

� TM1. �3.23�

Therefore, Eq. �3.19� takes the form

��k0� = ia0 −
i

4
�ST0

� T�2M1
2. �3.24�

The region of parameter space where Im���k0��=0 foretells
the onset of convective instability. In this space we have
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FIG. 2. Dispersion relation �Im��� versus k2� for varying ST0
,

fixed �T �=0.5 K�, fixed ks �=7�104 mol−1 dm3�, and other param-
eters as mentioned in the text.
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M1
2 =

4a0

�ST0
� T�2 = N2 �3.25�

where N2 is an abbreviation incorporated for simplicity.
An expression for ks can be obtained from M1 as defined

earlier,

ks =
1

u0
�− 1 +

�− u0 ± u0
2 − 4N�u0 − 1��
2N

� . �3.26�

On the other hand, Eq. �3.25� gives us an expression for
ST0

as

ST0
=

4a0

�TM1
. �3.27�

A look at the variation of ks keeping the Soret coefficient
constant, and vice versa, with changing values of �T gives
us an idea of the role of the thermal gradient in bringing
about characteristic changes in the diffusion of components
of a reaction mixture. Figures 3 and 4 portray the plots of ks

and ST0
, respectively, with varying �T. The region of space

below the curve in Fig. 4 depicts the region of absolute in-
stability and that above it stands for a convectively unstable
state. The range of the Soret coefficient values matches well
with the experimental results for electrolytes, where Soret
coefficients are of the order of �10−3 K−1 �29,30�. Whereas,
in polymeric solutions ST0

�0.5 K−1. Recently, values of ST0
from 0.25 to 0.17 K−1 have been reported in magnetic col-
loidal systems �9�.

The condition for transition to stationary patterns can be
found by imposing �=0, so that the perturbation has the
form ei�kxx+kyy�. From Eq. �3.18�, we then have

k5ST0
� T�M1 + M2 + M3�d − k3ST0

� T��M2 + M3�a0

+ �ST0
�2��T�2M1M2M3�d = 0. �3.28�

This gives us an expression for k as

k = � �ST0
�2��T�2M1M2M3 + �M2 + M3�a0

M1 + M2 + M3
�1/2

.

�3.29�

Expressing Eq. �3.28� in terms of the variation of ST0
versus

�T, we have

��ST0
�2��T�2�2� �M1M2M3�2

�M1 + M2 + M3�2a0

−
M1M2M3�M1M2 + 2M2M3�

M1 + M2 + M3
�

+ �ST0
�2��T�2� �M2 + M3��M1M2M3�

�M1 + M2 + M3�2 a0

−
�M2 + M3��M1M2 + 2M2M3�

M1 + M2 + M3
− M2M3a0�

+
�M2 + M3�2

�M1 + M2 + M3�2a0
3 = 0. �3.30�

A deeper look into Eq. �3.30� reveals that, under the im-
posed conditions, there exists no such locus in real parameter
space that may indicate the existence of stationary patterns.
This predicts that, in the arsenous acid–iodate system, ther-
mal diffusion is not expected to lead to the onset of patterns
stationary in time.

IV. NUMERICAL SIMULATIONS AND DISCUSSION

A. Numerical simulation: Wave propagation

In order to explore our stability analysis further, we now
carry out numerical simulations of the reaction-diffusion sys-
tem �Eqs. �2.16�–�2.18��, using the explicit Euler method for
the integration of the equations, following discretization of
space and time. A finite system size of 100�100 grid points
has been chosen. Zero-flux boundary conditions have been
considered along all the four walls. A time interval �t
=0.000 01 s and a cell size �x=0.1 mm have been found to
be appropriate for the purpose.

We have carried out our numerical simulations for

0.0 0.5 1.0 1.5 2.0

-1

0

1

2

3

∇∇∇∇ T (K)

k s
(1

05
m

o
l-1

d
m

3 )

FIG. 3. Plot of ks with varying temperature gradient �T for a
fixed value of ST0

�=6.5�10−3 K−1� and other parameters as men-
tioned in the text.
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Convective Instability
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FIG. 4. Variation of ST0
with changing temperature gradient �T,

the plot depicting the transition from absolute to convective insta-
bility. Here ks=7�104 mol−1 dm3� and other parameters are as
mentioned in the text.
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different values of ST0
, ranging from −1.3�10−4 to 6.5

�10−2 K−1. We impose a constant thermal gradient ��T
=0.5 K� and a fixed value of ks �=7�104 M−1�. The initial
conditions are taken identical to the initial experimental val-
ues of the reactants, with u0=1.0�10−6M, v0=0.006M, over
the unreacted reaction surface ahead of the front. The small
area behind the front is considered as that where the reaction
has already taken place, and the initial value of the iodide ion
concentration here is considered to be u0=0.006M, and that
of the iodate v0=1.0�10−6M. The hydrogen ion, or acid
catalyst, which acts as a buffer, is taken to be initially uni-
form all over the reaction vessel with a concentration of w0
=0.0071M. The rate constants k1 and k2 are the experimen-
tally admissible values mentioned earlier.

We calculate the iodine concentration at any time t, as a
function of the concentrations of iodide and iodate ions, tak-
ing into consideration the conservation of total iodine in the
system:

�I2�t =
1

2
��I−�0 + �IO3�0 − �I−�t + �IO3

−�t� . �4.1�

Figure 5 represents the wave front as a plot of the iodine

concentration versus the direction of wave propagation, at
three different times. In Figs. 6–10, we show the surface
plots of the iodine concentration, changing with time. As the
wave packet moves forward it forms a concentration gradient
of the reactants, as shown in the figures. The reactant con-
centration behind the wave front may increase to a constant
value as seen in the case of low ST0

�=1.3�10−4 and 1.3
�10−3 K−1� values �Figs. 6 and 7�. This situation closely
resembles the state of absolute instability. It matches with the
case in Fig. 5�a�, where the maximum of the wave front
increases with no back.

For still higher values of the Soret coefficient �ST0
�2.27�10−3 K−1�, the wave front moves forward as a maxi-
mum, and the concentration behind the wave front starts to
decrease with time. This is displayed by the surface plot of
iodine concentration �Fig. 8�. The trend is clearer for higher
values of ST0

�=3.9�10−2 and 6.5�10−2 K−1� as is evident
from Figs. 9 and 10. This type of wave propagation is indica-
tive of convective instability. The plot in Fig. 5�b� signifies
the specific nature of the wave under this kind of instability.

In keeping with our analysis, a further variation of ST0
to

either higher or lower values does not lead to the formation
of stationary patterns.
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FIG. 5. Concentration of io-

dine versus the direction of wave
propagation at different times, de-
picting the influence of �a� abso-
lute instability and �b� convective
instability.
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FIG. 6. Time-evolved surface
plots of the concentration of io-
dine for Soret coefficient value of
ST0

=1.3�10−4 K−1, showing ab-
solute instability: �a� 10, �b� 100,
�c� 200, and �d� 300 s. �Other pa-
rameters are as mentioned in the
text.�
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We also observe the time �tm� required by the maximum
of the propagating wave front to reach a particular point. The
initial conditions has been set as in the previous case. It is
seen from a plot of tm vs ST0

�Fig. 11�, that tm varies hyper-
bolically with respect to ST0

, with asymptotes at x=0 and y
=0. There can be seen a distinct break in the curve, which
occurs due to the shift between absolute and convective in-
stabilities. The region around which this transition occurs
�ST0

=2.27�10−3 K−1, �T=0.5 K� is in coherence with the
analytical result �Fig. 4�.

B. Possible experimental setup

Keeping in view recent developments, it is apparent that
theoretical studies of such instability-inducing effects of ther-

modiffusion on reaction-diffusion systems have not yet been
performed. As has been predicted by both our analysis and
numerical simulations, a slight variation in the value of the
Soret coefficient can cause a crossover between the absolute
and convective instabilities, thus bringing about appreciable
changes in the wave front properties. The high sensitivity of
the arsenous acid–iodate reaction, which establishes it as one
of the best systems for the study of wave front propagation
�17,22,24�, also ensures the monitoring of this effect of ther-
modiffusion, within workable ranges of experimental con-
stants. For the investigation of the spatiotemporal dynamics
in our system, we can carry out our experiment in an acry-
lamide gel phase in the presence of starch as an indicator
�20�. The resulting gel can then be placed on a Peltier ele-
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FIG. 7. Time-evolved surface
plots of the concentration of io-
dine for Soret coefficient value of
ST0

=1.3�10−3 K−1 showing ab-
solute instability: �a� 10, �b� 100,
�c� 200, and �d� 300 s. �Other pa-
rameters are as mentioned in the
text.�
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FIG. 8. Time-evolved surface
plots of the concentration of io-
dine for Soret coefficient value of
ST0

=2.34�10−3 K−1 showing the
advent of convective instability:
�a� 10, �b� 100, �c� 200, and �d�
300 s. �Other parameters are as
mentioned in the text.�
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ment, which can control the temperature, in order to produce
spatial temperature gradients in the gel. The current flow
through this element can be controlled by a computer so as to
cool one-half of the element while heating the other end, thus
establishing a well-defined temperature gradient. The tem-
perature of the gel can be measured by a thermocouple, and
the wave front propagation measured by a camera and other
necessary devices. Such experimental setups have been em-
ployed in recent studies of biochemical oscillatory systems
�31�.

V. CONCLUSION

In this paper, we have studied the effect of a thermal
gradient on an ionic reaction-diffusion system, the iodate–
arsenous acid reaction. It has been shown that thermal diffu-

sion, which appears as a thermodynamic cross effect be-
tween concentration flux and thermal gradient, results in
convection terms, thus giving rise to absolute and convective
instabilities, in the presence of a chemical reaction. The
thermodiffusion-induced instabilities are appropriate for
wave propagation of different types. We also suggest a prob-
able experimental setup to study our model. We hope this
approach will be useful for exploring the role of the Soret
effect in initiating instability in other chemical systems and
in the modeling of flow-distributed oscillations.
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FIG. 9. Time-evolved surface
plots of the concentration of io-
dine for Soret coefficient value of
ST0

=3.9�10−2 K−1 showing con-
vective instability: �a� 10, �b� 100,
�c� 200, and �d� 300 s. �Other pa-
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text.�
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�c� 200, and �d� 300 s. �Other pa-
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APPENDIX

The rate laws of the different species involved in the el-
ementary steps of the Dushman reaction are as follows:

d�IO3
−�

dt
= − k3�IO3

−��H+� + k−3�HIO3� , �A1�

d�H+�
dt

= − k3�IO3
−��H+� + k−3�HIO3� − k4�HIO3��I−��H+�

+ k−4�I2O2��H2O� , �A2�

d�HIO3�
dt

= k3�IO3
−��H+� − k−3�HIO3� − k4�HIO3��I−��H+�

+ k−4�I2O2��H2O� , �A3�

d�I2O2�
dt

= k4�HIO3��I−��H+� − k−4�I2O2��H2O� − k5�I2O2�

��H2O� − k6�I2O2��I−� , �A4�

d�I−�
dt

= − k4�HIO3��I−��H+� − k6�I2O2��I−� , �A5�

d�I2�
dt

= k6�I2O2��I−� . �A6�

Applying steady state approximations to HIO3 and I2O2 and
considering �H+� constant �due to the large concentration of
H+ ions�, we arrive at the following rate equation:

d�I−�
dt

= �IO3
−��I−��H+�2�k� + k��I−�� , �A7�

where k� and k� are constants, in keeping with the experi-
mental rate law.

Also this implies that

d�IO3
−�

dt
= 0, �A8�

d�H+�
dt

= 0. �A9�
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